Solutions 2

Exercise 3.10

$$
\begin{aligned}
\mathbf{I}(\boldsymbol{\theta}) & =\mathbb{E}\left[\frac{\partial \ln p(\mathbf{x} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot \frac{\partial \ln p(\mathbf{x} ; \boldsymbol{\theta})^{T}}{\partial \boldsymbol{\theta}}\right] \\
\mathbf{a}^{T} \mathbf{I}(\boldsymbol{\theta}) \mathbf{a} & =\mathbb{E}\left[\mathbf{a}^{T} \frac{\partial \ln p(\mathbf{x} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot \frac{\partial \ln p(\mathbf{x} ; \boldsymbol{\theta})^{T}}{\partial \boldsymbol{\theta}} \mathbf{a}\right] \\
& =\mathbb{E}\left[\left(\mathbf{a}^{T} \frac{\partial \ln p(\mathbf{x} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{2}\right] \geq 0
\end{aligned}
$$

for any a and all $\boldsymbol{\theta}$, thus it is positive semi-definite. For Problem 3.3, letting $\boldsymbol{\theta}=\left[\begin{array}{ll}A & r\end{array}\right]^{T}$ and using (3.31) in Page 47, we can get

$$
[\mathbf{I}(\boldsymbol{\theta})]_{i j}=\frac{1}{\sigma^{2}}\left[\frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_{i}}\right]^{T}\left[\frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_{j}}\right]
$$

where $\boldsymbol{\mu}(\boldsymbol{\theta})=\left[\begin{array}{llll}A & A r & \ldots & A r^{N-1}\end{array}\right]$. Thus,

$$
\begin{aligned}
\frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial A}=\left[\begin{array}{llll}
1 & r & \ldots & r^{N-1}
\end{array}\right]^{T} \quad \frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial r}=A\left[\begin{array}{llll}
0 & 1 & \ldots & (N-1) r^{N-2}
\end{array}\right]^{T} \\
\mathbf{I}(\boldsymbol{\theta})=\frac{1}{\sigma^{2}}\left[\begin{array}{cc}
\sum_{n=0}^{N-1} r^{2 n} & A \sum_{n=0}^{N-1} n r^{2 n-1} \\
A \sum_{n=0}^{N-1} n r^{2 n-1} & A^{2} \sum_{n=0}^{N-1} n^{2} r^{2 n-2}
\end{array}\right]
\end{aligned}
$$

If $A=0, \mathbf{I}(\boldsymbol{\theta})$ is not positive definite.

Exercise 3.14

Since $x[n] \sim \mathcal{N}\left(A, \sigma_{A}^{2}\right)$, we can get $\hat{A}=\frac{1}{N} \sum_{n=0}^{N-1} x[n]$.

$$
\mathbb{E}\left(\hat{A} \mid A=A_{0}\right)=A_{0} \quad \operatorname{var}\left(\hat{A} \mid A=A_{0}\right)=\frac{\sigma^{2}}{N} \rightarrow 0, N \rightarrow \infty
$$

So $\hat{A} \rightarrow A_{0}$ when $N \rightarrow \infty$. Consider the estimator $\hat{\sigma}_{A}^{2}=(\hat{A})^{2}$, we have $\mathbb{E}\left[\hat{\sigma}_{A}^{2}\right]=\mathbb{E}\left[\hat{A}^{2}\right]=$
$\operatorname{var}(\hat{A})+\mathbb{E}[\hat{A}]^{2}=A_{0}^{2}+\frac{\sigma^{2}}{N} \rightarrow A_{0}^{2}$ when $N \rightarrow \infty$. Since $\mathbb{E}\left[A^{2}\right]=\operatorname{var}[A]=\sigma_{A}^{2}$ and

$$
\begin{aligned}
\mathbb{E}\left[A^{4}\right] & =\int_{-\infty}^{\infty} A^{4} \frac{1}{\sqrt{2 \pi \sigma_{A}^{2}}} e^{-\frac{A^{2}}{2 \sigma_{A}^{2}}} d A \\
& =\frac{1}{\sqrt{2 \pi \sigma_{A}^{2}}} \int_{-\infty}^{\infty} A^{3}\left(-\sigma_{A}^{2}\right) d e^{-\frac{A^{2}}{2 \sigma_{A}^{2}}} \\
& =\frac{1}{\sqrt{2 \pi \sigma_{A}^{2}}} \cdot\left[\left.A^{3}\left(-\sigma_{A}^{2}\right) e^{-\frac{A^{2}}{2 \sigma_{A}^{2}}}\right|_{-\infty} ^{\infty}+3 \int_{-\infty}^{\infty} A^{2} \sigma_{A}^{2} e^{-\frac{A^{2}}{2 \sigma_{A}^{2}}} d A\right] \\
& =3 \sigma_{A}^{2} \int_{-\infty}^{\infty} A^{2} \frac{1}{\sqrt{2 \pi \sigma_{A}^{2}}} e^{-\frac{A^{2}}{2 \sigma_{A}^{2}}} d A \\
& =3 \sigma_{A}^{4}
\end{aligned}
$$

we can get $\operatorname{var}\left(\hat{\sigma}_{A}^{2}\right)=\operatorname{var}\left(\hat{A}^{2}\right)=\mathbb{E}\left[A^{4}\right]-\mathbb{E}\left[A^{2}\right]^{2}=2 \sigma_{A}^{4}$. So that $\operatorname{var}\left(\hat{\sigma}_{A}^{2}\right) \rightarrow 2 \sigma_{A}^{4}$, which is just the CRLB as $N \rightarrow \infty$. The $\hat{\sigma}_{A}^{2}$ cannot be estimated without error because we cannot reduce the random nature of A when we only have one realization of A.

Exercise 3.15

Since $x[n]$ s are independent, we have $\mathbf{I}(\rho)=N \mathbf{i}(\rho)$, where $\mathbf{i}(\rho)$ is the Fisher information matrix for a single vector sample. Using (3.32), we can get

$$
\mathbf{i}(\rho)=\frac{1}{2} \operatorname{tr}\left[\left(\mathbf{C}^{-1}(\rho) \frac{\partial \mathbf{C}(\rho)}{\partial \rho}\right)^{2}\right]
$$

and

$$
\mathbf{C}^{-1}(\rho)=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right] \quad \frac{\partial \mathbf{C}(\rho)}{\partial \rho}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Thus,

$$
\mathbf{i}(\rho)=\frac{1+\rho^{2}}{\left(1-\rho^{2}\right)^{2}} \quad \mathbf{I}(\rho)=\frac{N\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{2}}
$$

We can get CRLB for ρ as $\operatorname{var}(\rho) \geq \frac{\left(1-\rho^{2}\right)^{2}}{N\left(1+\rho^{2}\right)}$.

Exercise 3.16

Since we assume the mean of $x[n]$ is zero in Page 51, using (3.32), we can get

$$
I\left(P_{0}\right)=\frac{1}{2} \operatorname{tr}\left[\left(\mathbf{C}^{-1}\left(P_{0}\right) \frac{\partial \mathbf{C}\left(P_{0}\right)}{\partial P_{0}}\right)^{2}\right]
$$

Denote $r_{x x}[k]=\mathcal{F}^{-1}\left\{P_{x x}(f)\right\}=P_{0} \mathcal{F}^{-1}\{Q(f)\}$ and let $q[k]=\mathcal{F}^{-1}\{Q(f)\}$, the autocorrelation matrix of \mathbf{x} has a Toeplitz form as follows:

$$
\left[\mathbf{C}\left(P_{0}\right)\right]_{i j}=r_{x x}[i-j]=P_{0} q[i-j]=P_{0}[\hat{\mathbf{C}}]_{i j} \quad i, j=1,2, \ldots, N
$$

where $[\hat{\mathbf{C}}]_{i j}=q[i-j]$. Hence,

$$
\begin{gathered}
\mathbf{C}^{-1}\left(P_{0}\right) \frac{\partial \mathbf{C}\left(P_{0}\right)}{\partial P_{0}}=\frac{1}{P_{0}} \hat{\mathbf{C}}^{-1} \hat{\mathbf{C}}=\frac{1}{P_{0}} \mathbf{E} \\
I\left(P_{0}\right)=\frac{1}{2} \operatorname{tr}\left[\frac{1}{P_{0}^{2}} \mathbf{E}^{2}\right]=\frac{N}{2 P_{0}^{2}} \quad \operatorname{var}\left(\hat{P}_{0}\right) \geq \frac{2 P_{0}^{2}}{N}
\end{gathered}
$$

Using (3.34) in Page 51, we can get the asymptotic form

$$
\begin{aligned}
I\left(P_{0}\right) & =\frac{N}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{\partial \ln P_{x x}\left(f ; P_{0}\right)}{\partial P_{0}}\right)^{2} d f \\
& =\frac{N}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{\partial \ln P_{0} Q(f)}{\partial P_{0}}\right)^{2} d f \\
& =\frac{N}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{P_{0}^{2}} d f \\
& =\frac{N}{2 P_{0}^{2}}
\end{aligned}
$$

They are the same in this example, but not in general.

Exercise 3.17

Similar to example 3.14 in Page 56, we can get Fisher information matrix over the interval $n=-M, \ldots, 0, \ldots, M$ except $[\mathbf{I}(\boldsymbol{\theta})]_{23}=[\mathbf{I}(\boldsymbol{\theta})]_{32}=\frac{\pi A^{2}}{\sigma^{2}} \sum_{n=-M}^{n=M} n=0$.

$$
\mathbf{I}(\boldsymbol{\theta})=\frac{1}{\sigma^{2}}\left[\begin{array}{ccc}
\frac{2 M+1}{2} & 0 & 0 \\
0 & 2 A^{2} \pi^{2} \sum_{n=-M}^{M} n^{2} & 0 \\
0 & 0 & \frac{(2 M+1) A^{2}}{2}
\end{array}\right]
$$

Thus, the CRLB is

$$
\begin{gathered}
\operatorname{var}(\hat{A}) \geq \frac{2 \sigma^{2}}{2 M+1}=\frac{2 \sigma^{2}}{N} \quad \operatorname{var}(\hat{\phi}) \geq \frac{2 \sigma^{2}}{(2 M+1) A^{2}}=\frac{1}{N \eta} \\
\operatorname{var}\left(\hat{f}_{0}\right) \geq \frac{\sigma^{2}}{2 A^{2} \pi^{2} \sum_{n=-M}^{M} n^{2}}=\frac{6 \sigma^{2}}{4 A^{2} \pi^{2} M(M+1)(2 M+1)}=\frac{12}{(2 \pi)^{2} \eta N\left(N^{2}-1\right)}
\end{gathered}
$$

where $N=2 M+1$ and $\eta=A^{2} /\left(2 \sigma^{2}\right)$. The results of \hat{A} and \hat{f}_{0} are the same as in example, however $\hat{\phi}$ is different.

Exercise 3.18

According to (3.40) in Page 56, we have

$$
\overline{F^{2}}=\frac{\int_{0}^{T_{s}}\left(\frac{d s(t)}{d t}\right)^{2} d t}{\int_{0}^{T_{s}} s^{2}(t) d t}=\frac{\int_{0}^{0.02}(100)^{2} d t}{\varepsilon}=\frac{200}{\varepsilon}
$$

and

$$
\operatorname{var}(\hat{R}) \geq \frac{c^{2} / 4}{\frac{\varepsilon}{N_{0} / 2} \overline{F^{2}}}=\frac{(1500)^{2} / 4}{10^{6} \cdot 200}=0.00281
$$

